
Patterns of Simplicity

Giovanni Asproni
Kevlin Henney

Peter Sommerlad

Agenda

Kick-off
Simplicity
Examples
Patterns
Workshop
Wrap-up

Defining Simplicity

Simplicity is being simple. It is a property, condition,
or quality which things can be judged to have. It usually
relates to the burden which a thing puts on someone
trying to explain or understand it. Something which is
easy to understand or explain is simple, in contrast to
something complicated. In some uses, simplicity can
be used to imply beauty, purity or clarity. Simplicity
may also be used in a negative connotation to denote
a deficit or insufficiency of nuance or complexity of a
thing, relative to what is supposed to be required.

http://en.wikipedia.org/wiki/Simplicity

Thoughts on Simplicity

The price of reliability is the pursuit of the utmost
simplicity.

C A R Hoare

Simplicity before understanding is simplistic; simplicity
after understanding is simple.

Edward de Bono

The approach to style is by way of plainness,
simplicity, orderliness, sincerity.

William Strunk and E B White

Favour Logic over Control Flow
if(isOldest)
{

if(timeLastAccessed < cutOffTime)
{

return true;
}
else
{

return false;
}

}
else
{

return false;
}

return isOldest && timeLastAccessed < cutOffTime;Simplifies to...

Replace Flags with Conditions
boolean failed = false;
if(message != null)
{

if(!enqueue(message))
failed = true;

}
else

failed = true;
if(failed)

throw new MessageEnqueueException();

if(message == null || !enqueue(message))
throw new MessageEnqueueException();

Simplifies to...

Consolidate Duplicate Code
if(!file.exists() ||

(file.exists() && !file.hasWritePermission()))
return false;

if(!file.exists() || !file.hasWritePermission()))
return false;

Both simplify to...

if(!file.exists())
return false;

else
if(!file.hasWritePermission()))

return false;

Eliminates duplicates,
but long-winded and
clumsy rather than
simple

Behavioural Test Cases
void testIsLeapYear()
{

// years not divisible by 4 are not leap years
assert !isLeapYear(1906)
assert !isLeapYear(2009)

// years divisible by 4 but not by 100 are leap years
assert isLeapYear(1984)
assert isLeapYear(2008)

// years divisible by 100 but not by 400 are not leap years
assert !isLeapYear(1900)
assert !isLeapYear(2100)

// years divisible by 400 are leap years
assert isLeapYear(2000)
assert isLeapYear(2400)

}

void testThatYearsNotDivisibleBy4AreNotLeapYears()
{

assert !isLeapYear(1906)
assert !isLeapYear(2009)

}
void testThatYearsDivisibleBy4ButNotBy100AreLeapYears()
{

assert isLeapYear(1984)
assert isLeapYear(2008)

}
void testThatYearsDivisibleBy100ButNotBy400AreNotLeapYears()
{

assert !isLeapYear(1900)
assert !isLeapYear(2100)

}
void testThatYearsDivisibleBy400AreLeapYears()
{

assert isLeapYear(2000)
assert isLeapYear(2400)

}

More clearly expressed as...

Simplicity through Practice

Many examples of practices can be
captured as considerations and heuristics

E.g., be suspicious of lots of Boolean literals
E.g., refactor against tests
E.g., care about the little details, because
complexity starts in the small

Others are more specific
E.g., apply De Morgan's Laws
E.g., name interfaces after roles

Patterns

Patterns allow us to name, deconstruct
and communicate proven practice

Recurrence (ideally good) is key
Patterns can refer to general design ideas,
code detail, day-to-day development practice,
broader development process, etc.

Patterns are of interest as a means of
communicating and reflecting on simplicity
and the practices that foster it

Naming and Context

Patterns are named
Typically, but not necessarily, noun phrases
Nouns work well for describing structure, but
verbs can be effective for process advice

Patterns apply in a context
They are not universal principles: a good
practice in one context can be poor in another
E.g., programming language, framework, tool
chain, project type, organisational culture

From Problem to Solution

Patterns are motivated by a problem
The problem is often characterised by forces
and a simple summary of the problem

Patterns propose a solution
A simple summary of a solution is often
accompanied by more detail and discussion

Patterns have consequences
Both benefits and liabilities, actual and
potential, should be considered

Patterns for Simplicity

What patterns can we find that help with
the act of simplifying a software system?

What patterns of design, from the fine grained
to the large scale, do we see in code that we
consider to be simple?
What patterns of practice do we know that
help us to keep things simple?
In what ways are these different to the
patterns or combinations of patterns we find
that lead to complexity and complications?

Patterns for Complexity

Not all that recurs is necessarily good
Originally referred to simply as bad patterns,
many terms now cover this idea: smells,
dysfunctional patterns and anti-patterns

Accidental complexity arises from
groupthink and inappropriate pattern use

E.g., most applications of Singleton
E.g., copy and paste coding
E.g., a setter per getter, a getter per field

Pattern Mining

Workshop to identify and detail some
patterns that promote simplicity

And also note some that lead to complexity
Workshop approach:

Brainstorm pattern names
Timeboxed pattern writing
Group patterns together

Pattern Names

Brainstorming
No need to filter or edit

Choose descriptive names
You should be able to tell what the idea of the
pattern is by its name
You can include existing known pattern
names, practices and refactorings

Pattern Elaboration

Name
Directly from brainstorming or refined
Also mark the confidence or quality next to the name
(select from Good, OK, Neutral, Ungood)

Context
Where and when pattern applies

Problem
What are the issues?

Solution
The practice/technique/etc. and its consequences?

Grouping

Group similar and related patterns
together

Similar because they are the same in terms of
outcome, overall intent or actual practice
Related because they relate to the same kind
of thing or at the same level of scale

Done

http://wiki.hsr.ch/SimpleCode/

